- 入駐時間: 2005-08-29
- 聯(lián)系人:曾冰
- 電話:0755-83613369
-
聯(lián)系時,請說明易展網(wǎng)看到的
- Email:494863980@qq.com
- 工地揚塵專項監(jiān)測
- 室內空氣質量檢測設備
- 戶外微型氣象站
- 多參數(shù)大氣環(huán)境監(jiān)測設備
- 礦用多參數(shù)檢測設備
- 粉塵含量/濃度檢測
- 環(huán)境自動監(jiān)測專項方案
- 空氣質量傳感器/檢測控制...
- VOC傳感器和模組及半導...
- PM2.5傳感器模塊
- PM2.5顆粒物濃度檢測...
- 粉塵濃度檢測儀/分析儀
- 灰塵傳感器
- 室內甲醛傳感器/檢測儀
- 二氧化碳CO2傳感器
- 二氧化碳檢測儀/變送器/...
- 一氧化碳CO傳感器/變送...
- 溫度傳感器元件/模塊
- 溫濕度變送器/控制器
- 氧氣O2傳感器/變送器
- 臭氧O3傳感器/變送器
- 半導體氣體傳感器元件
- 氣體傳感器/變送器/檢測...
- 綜合環(huán)境參數(shù)檢測設備
- 有毒有害氣體檢測儀/報警...
- 固定安裝氣體檢測變送器
- 壓力傳感器/變送器
- 液位/物位傳感器
- 其他傳感器
- 聯(lián)系人 : 李先生
- 聯(lián)系電話 : 0755-83613369
- 傳真 : 0755-83613309
- 移動電話 : 13924599191
- 地址 : 深圳市龍華區(qū)油松1980文化科技產業(yè)園3號樓408-409單元
- Email : info@bmoon-tech.com
- 郵編 : 518000
傳感器電路抗干擾技術設計及研究
傳感器電路抗干擾技術設計及研究
傳感器電路的內部噪聲突出點:
1、高頻熱噪聲
高頻熱噪聲是由于導電體內部電子的無規(guī)則運動產生的。溫度越高,電子運動就越激烈。導體內部電子的無規(guī)則運動會在其內部形成很多微小的電流波動,因其是無序運動,故它的平均總電流為零,但當它作為一個元件(或作為電路的一部分)被接入放大電路后,其內部的電流就會被放大成為噪聲源,特別是對工作在高頻頻段內的電路高頻熱噪聲影響尤甚。
通常在工頻內,電路的熱噪聲與通頻帶成正比,通頻帶越寬,電路熱噪聲的影響就越大。在通頻帶△f內,電路熱噪聲電壓的有效值:。以一個1 kΩ的電阻為例,如果電路的通頻帶為1 MHz,則呈現(xiàn)在電阻兩端的開路電壓噪聲有效值為4μV(設溫度為室溫T=290 K)??雌饋碓肼暤碾妱觿莶⒉淮?,但假設將其接入一個增益為106倍的放大電路時,其輸出噪聲可達4 V,這時對電路的干擾就很大了。
2、低頻噪聲
低頻噪聲主要是由于內部的導電微粒不連續(xù)造成的。特別是碳膜電阻,其碳質材料內部存在許多微小顆粒,顆粒之間是不連續(xù)的,在電流流過時,會使電阻的導電率發(fā)生變化引起電流的變化,產生類似接觸**的閃爆電弧。另外,晶體管也可能產生相似的爆裂噪聲和閃爍噪聲,其產生機理與電阻中微粒的不連續(xù)性相近,也與晶體管的摻雜程度有關。
3、半導體器件產生的散粒噪聲
由于半導體PN結兩端勢壘區(qū)電壓的變化引起累積在此區(qū)域的電荷數(shù)量改變,從而顯現(xiàn)出電容效應。當外加正向電壓升高時,N區(qū)的電子和P區(qū)的空穴向耗盡區(qū)運動,相當于對電容充電。當正向電壓減小時,它又使電子和空穴遠離耗盡區(qū),相當于電容放電。當外加反向電壓時,耗盡區(qū)的變化相反。當電流流經(jīng)勢壘區(qū)時,這種變化會引起流過勢壘區(qū)的電流產生微小波動,從而產生電流噪聲。其產生噪聲的大小與溫度、頻帶寬度△f成正比。
4、電路板上的電磁元件的干擾
許多電路板上都有繼電器、線圈等電磁元件,在電流通過時其線圈的電感和外殼的分布電容向周圍輻射能量,其能量會對周圍的電路產生干擾。像繼電器等元件其反復工作,通斷電時會產生瞬間的反向高壓,形成瞬時浪涌電流,這種瞬間的高壓對電路將產生極大的沖擊,從而嚴重干擾電路的正常工作。
5、電阻器的噪聲
電阻的干擾來自于電阻中的電感、電容效應和電阻本身的熱噪聲。例如一個阻值為R的實芯電阻,可等效為電阻R、寄生電容C、寄生電感L的串并聯(lián)。一般來說,寄生電容為0.1~0.5 pF,寄生電感為5~8 nH。在頻率高于1 MHz時,這些寄生電感電容就不可忽視了。
傳感器電路通常用來測量微弱的信號,具有很高的靈敏度,但也很容易接收到外界或內部一些無規(guī)則的噪聲或干擾信號,如果這些噪聲和干擾的大小可以與有用信號相比較,那么在電路的輸出端有用信號將有可能被淹沒,或由于有用信號分量和噪聲干擾分量難以分辨,則必將妨礙對有用信號的測量。所以在傳感器電路的設計中,往往抗干擾設計是傳感器電路設計是否成功的關鍵。